Math Logic: Model Theory & Computability Lecture 04

Examples. (a) $R := (IR, 1, \cdot, ()^{-1})$ be the group of ceals will f in the signchae $T_{gp} := (1, \cdot, ()^{-1})$ where $1^{\mathbb{R}} := 0$, $\mathbb{R} := f$, $(()^{-1})^{\mathbb{R}} := -()$. Also let $R^{+} := (IR^{+}, 1, \cdot, ()^{-1})$, where $IR^{+} := (0, \infty)$, $1^{\mathbb{R}^{+}} := 1$, $0^{\mathbb{R}^{+}} := 0$, $(()^{-1})^{\mathbb{R}^{+}} := ()^{-1}$. Then $h : IR \to IR^{+}$ is a T_{gp} -isomorphism. $\frac{R^*}{R^*} := (R \setminus \{0\}, 1, \cdot, ()^{-1}), \text{ hen } h: R \to R^* \text{ is a } \mathbb{F}_p^{-enbedding.}$ The language of first-order logic. A signature & contains names for constants, functions, and relations. Here we describe how to obtain new names for contants, function, and relations, allowing certain operations on them. Det. For a sighthre of the (first-order) alphabet of of devoted Ar, is the union of the following sets of symbols: (i) (onst(o) V Funct (o) V Rel(o) (ii) Punctuction y=bols: "(",")", " (conna) (iii) Variables: Vo, V, Va, Va, ... (infinitely many)

lastly, we abbreviate $k \in \mathbb{N}^{+}$ as $(\cdots(1+1)+\ldots+1+1)$. Then $((3 \cdot x^{2})-(2 \cdot x \cdot y))+1$ is a V_{rug} -term, k times

We now want to define interpretation of a orderen in a orstructure. The endion symbols in a came with a fixed arity. We would to be able to increase the arity. For example, in algebra, a polynomial x2 x.y+1 can be treated as a function of 2 or more variables; incleed, if we write t:= x2+ x.gt , then t(x,y,2) is a function of 3 variables.

Det. let
$$\vec{V} := (V_{n_1}, V_{n_2}, ..., V_{n_K})$$
 be a vector of distinct variables and let t be
a σ -term. We call $t(\vec{v})$ as extended σ -term if all variables in
t appear in \vec{V} .

Det. Let
$$A := (A, \sigma)$$
 be a σ -structure and $t(\vec{v})$ be an extended σ -term,
where $N := |\vec{v}|$. We define the interpretation of $t(\vec{v})$ in A as a
function $t^{\Delta}(\vec{v}) : A^{n} \rightarrow A$ given by inclustrin on the definition of t
as follows:
(i) If $t := c$ for some $c \in Const(\sigma)$, then $t^{\Delta}(\vec{v})(\vec{a}) := c^{\Delta}$, i.e. $t^{\Delta}(\vec{v})$ is the
constant c^{Δ} function on A^{n} .
(ii) If $t := v_{k}$ for some variable v_{k} , then v_{k} appears in $\vec{v} := (v_{k}, v_{k}, ..., v_{k})$,
i.e. $V_{k} = V_{k}$ for some un, and v_{k} define
 $t^{\Delta}(\vec{v})(a_{1}, a_{2}, ..., a_{n}) := a_{m}$. In other words, $t^{\Delta}(\vec{v})$ is the
projection onto the unth coordinate on A^{n} .
(iii) If $t := f(t_{1}, t_{2}, ..., t_{k})$ for some u_{k} are extended σ -terms $t_{1}, ..., t_{k}$,
then $t_{i}(\vec{v}), t_{2}(\vec{v}), ..., t_{k}(\vec{v})$ are extended σ -terms so we can define
 $t^{\Delta}(\vec{v})(\vec{a}) := t^{\Delta}(t^{\Delta}_{i}(\vec{v})(\vec{a}), t^{\Delta}_{i}(\vec{v})(\vec{a}))$.