Math Logic: Model Theory \& Computability
Lecture 04

Examples (continued). (c) ht $\underline{A}:=(A, \leq)$ and $B:=(B, \leq)$ be the following partial orders:

Then $L: A \rightarrow B$ is a (S)-homonosplisme, in particular, we had $2 \leq 3$ in \underline{A} and we still have $h(2)=2 \leq 2=h(3)$ in B.
(d) Le $A:=(A, C)$ and $B=(B, C)$ he the following staid partial orders:

Then h is not a $(<)$-homomorphism
B beast $2<3$ in A but $h(2)=2 \nless 2=h(3)$ in B.
(e) Note that a proper colouring of a graph $\underline{G}:=(V, E)$ wi h n colours is equivalent to a homomorphism from G to the complete (undirected without loops) graph \underline{K}_{u} on u vertices.
 Indeed h is a homorphision.

This implies tnt if \underline{G} is n-colourable and $\underline{H} \rightarrow \underline{G}$ then H too is n-colourable. Conversely, if $\underline{H} \rightarrow \underline{G}$ and \underline{H} is not n-coloncable, then \underline{G} too is not n-colourable.

Deft. Let $\underline{A}:=(A, \sigma), \underline{B}:=(B, \sigma)$ be σ-structures. A map $h: A \rightarrow B$ is called a σ-isomorphism if h is suvertible (\Leftrightarrow bijective) and both h and h^{-1} are σ-homomorphisms. A and B are called isomopplic if there is a σ-isomorphisa $A \rightarrow B$ and we denote it $\underline{A} \cong \underline{B}$. We also write $h: A \xrightarrow{\longrightarrow} B$ to indicate that h is an isougophism.

Obs. $h: A$ a B being an isonopplism is eguivalect b h being a bijectire unoworphism with the additional property the

$$
\vec{a} \in R^{A} \quad \Leftrightarrow \quad h(\vec{a}) \in R^{B}
$$

for each u-wry $R \in \operatorname{Re} \mid(\sigma)$ and $\vec{a} \in A^{n}$.
Def. let $\underline{A}:=(A, \sigma)$ and $B:=(B, \sigma)$ be σ-strachures. A map $h: A \rightarrow B$ is called " σ-embedding if h is an isomorplisin from A to the substructure $h(\underline{A})$ of B, here $L(\mathbb{A})$ denotes the niche substructure supported by $h(A)$. In this case, we write $h: \underline{A} \subset B$ and we say the A embeds into B, clenotel by $A M B$.
015. This is equiv. to h being an injectire σ-how. with the achliLionel property the

$$
\vec{a} \in R^{A} \Leftrightarrow h(\vec{a}) \in R^{B}
$$

for each unary $R \in \operatorname{Re} \mid(\sigma)$ and $\vec{a} \in A^{n}$.

isomorphism.

embedding

Examples, (a) $\underline{R}:=\left(\mathbb{R}, 1, \cdot()^{-1}\right)$ be the group of reals under t in the sighather $\sigma_{y p}:=\left(1, \cdot()^{-1}\right)$ where $1^{R}:=0, \quad \mathbb{R}:=+,\left(()^{-1}\right)^{R}:=-()$. Also let $\mathbb{R}^{+}:=\left(\mathbb{R}^{+}, 1, \cdots()^{-1}\right)$, where $\mathbb{R}^{+}:=(0, \infty), 1^{R^{+}}:=1,0 \mathbb{R}^{+}:=0$, $\left(()^{-1}\right)^{\mathbb{R}^{+}}:=()^{-1}$. Then $h: \mathbb{R} \rightarrow \mathbb{R}^{+}$is a $\sigma_{y p}$-isomorphism.

$$
x \mapsto 2^{x}
$$

(b)

The inclusion map $\{1,2,3\} \rightarrow\{1,2,3,4\}$ $n \mapsto n$ is an injective hononorphism bat not an embedding.

But below it is:

The langange of first-order logic.
A signcture σ contains names for constants, functions, and relations. Here we describe how to obtain new names for contacts, function, and relations, allowing certain operations on them.

Def. For a sighctive σ, the (first-order) alphabet of σ, decoded A A_{σ}, is the union of the following ste of symbols:
(i) Cost $(\sigma) \cup$ Funct $(\sigma) \cup \operatorname{Re} \mid(\sigma)$
(ii) Punctuation symbols: "(", ")",") (comma)
(iii) Variables: $v_{0}, v_{1}, v_{2}, v_{3}, \ldots$ (infinitely many)
(iv) Logical connectives: Λ (conjucifiow), \vee (digucction), \neg (negation), \rightarrow (implication), \longleftrightarrow (equivalence)
(v) Quantifiers: \exists (exists), \forall (for all). (smew, h_{2})

We call trite sequences of sgubols tram $A_{\sigma} \sigma$-words or words in Ar.

We first define names for new factions, called terns.
Def. A r-tecm is a reword t obtained via the following inchuctive rules:
(i) $t:=c$ is a σ-term for each $c \in \operatorname{Const}(0)$.
(ii) $t:=v_{n}$ is a σ-ten for sch variable v_{n}, ie. ecch $n \in \mathbb{N}$.
(iii) $t:=f\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ is a σ-fere for each k-arg $f \in F_{\text {wundt }}(\sigma)$ and r-tecus $t_{1}, t_{2}, \ldots, t_{k}$.

Example. For $\sigma_{\text {cay }}:=(0,1, t,-(),-)$, $\sigma_{\text {any }}$-terms are exactly polynomials of several variables with integer coefficients. To we His, let's first decich Wat instead of writing $+(x, y)$ and $\cdot(x, y)$, we will wite $(x+y)$ and $(x-y)$. We also write x^{k} for $(-((\underbrace{k \text { times }}_{k-x) \cdot x) \cdots) \cdot x}$ lastly, we abbreviate $k \in \mathbb{N}^{+}$as $(\cdots(1+1)+\ldots)+1)$. Last ll, we abbreviate $k \in \mathbb{N}^{+}$as $(\cdots(1+1)+\ldots+1)$ ($\underbrace{\left(\left(3 \cdot x^{2}\right)-(2 \cdot x \cdot y)\right)+1 \text { is a } V_{r u g} \text {-term. }}_{k \text { times }}$ Then.

We now rant to define interpretation of a σ-term in a σ-structure. The suction symbols in σ cane with a fixed arity. We would to be able ho increase the arity. For example, in algebra, a polynomial $x^{2}+x \cdot y+1$ can be treated as a taction of 2 or more variables; incleed, if we write $t:=x^{2}+x \cdot y+1$, then $t(x, y, z)$ is a function of 3 variables.

Deft. Let $\vec{v}:=\left(v_{n_{1}}, v_{n_{2}}, \ldots, v_{n_{k}}\right)$ be a vechor of distinct variables and let t be a σ-term. We call $t(\vec{v})$ an extended σ-term if all variablecin t appear in \vec{v}.

Def. Let $\underline{A}:=(A, 0)$ be a σ-strachice and $t(\vec{v})$ be an extended σ-term, where $n:=|\vec{V}|$. We define the interpretation of $t(\vec{v})$ in A as a function $t^{A}(\vec{V}): A^{n} \rightarrow A$ given ls incluction on the definition of t as follows:
(i) If $t:=c$ bo sone $c \in \operatorname{Const}(\sigma)$, then $t^{A}(\vec{v})(\vec{a}):=c^{A}$, i,e. $t^{A}(\vec{v})$ is the constant C^{B} function on A^{n}.
(ii) If $t:=v_{k}$ for some variable v_{k}, then V_{k} appears in $\vec{v}:=\left(V_{l_{1}}, V_{l_{2}}, \ldots, V_{l_{n}}\right)$, i.e. $V_{k}=V_{e_{m}}$ for some m, and vel clefine $t^{A}(\vec{v})\left(a_{1}, a_{2}, \ldots, a_{n}\right):=a_{m}$. In other words, $t^{A}(\vec{v})$ is the projection onto the $m^{\text {th }}$ coordinate on A^{n}.
(iii) If $t=f\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ for some k-arg $f \in f_{\text {and }}(\sigma)$ and σ-terns t_{1}, \ldots, t_{k}, then $t_{1}(\vec{v}), t_{2}(\vec{v}), \ldots, t_{k}(\vec{v})$ are exfoncled σ-recons so we can clefine $t^{A}(\vec{v})(\vec{a}):=f^{A}\left(t_{1}^{A}(\vec{v})(\vec{a}), t_{2}^{A}(\vec{v})(\vec{a}), \ldots, t_{\vec{k}}^{A}(\vec{v})(\vec{a})\right)$.

